Causal Inference (What If)
 Ch11 Why models?

이종진

Seoul National University
ga0408@snu.ac.kr

August 05, 2021

Ch 11, Why model?

- Part II (ch11 ~ 18) is about the parametric (model-based) estimators.
- This chapter motivates the need for models in data analysis
- "Data cannot always speak for themselves, rather we need to supplement the data with a model."

Necessity of model; example

- Example
- 16 individuals infected with HIV.
- A continuous outcome Y (CD4 cell count)
- Wish to estimate the mean of Y among individuals with treatment level $A=a$
- Conditional mean, $E(Y \mid A=a)$
- Treatment A could be
- a dichotomous variables with two possible values
- a polytomous variables with 4 possible values
- a integer values from 0 to 100 mg

Necessity of model; example

Figure 11.1

Figure 11.2

Figure 11.3

- \# of possible values of $A>\#$ of observed individuals
- How can we estimate the mean of outcome Y among individuals with treatment level $A=90$ which not observed?

Necessity of model; example

- We often need to supplement the data with a model.
- With a priori restrictions, model can compensate for the lack of sufficient information in the data.
- $E(Y \mid A=a)=\theta_{0}+\theta_{1} A$

Nonparametric \& parametric

$$
E(Y \mid A)=\theta_{0}+\theta_{1} A
$$

- Nonparametric estimators
- Treatment A is a dichotomous; 2 quantities and 2 parameters
- Without any a priori restrictions,
- Standardization, IP weighting, stratification and matching.
- Parametric estimators
- Treatment A takes integer values; 101 quantities and 2 parameters
- Impose a priori restrictions on conditional mean (linear)

Smoothing \& The bias-variance trade-off

- Smoothing
- Linear model can be more flexible, introducing $A^{2} \ldots, A^{15}$
- The curve generally becomes more "wiggly", or less smooth, as the number of paramters increase.
- The bias-variance trade-off
- The larger the number of paramters in model, the more protection afforded against bias from the model misspecification.
- Although less smooth models may yield a less biased estimate, they also result in larger variance.

